1. 文章
        • 文章
        搜索

        深入學習貫徹黨的二十大精神

        為太忻州一體化經濟區建設貢獻科協力量

        首頁 >> 科普在線 >>科技博覽 >> 21℃的室溫超導真的要來了?讓子彈再飛一會兒
        详细内容

        21℃的室溫超導真的要來了?讓子彈再飛一會兒

        时间:2023-03-10 10:16     作者:佚名【转载】   来自:網絡整理   阅读

        當我們需要一個很大的磁場時,我們首先想到的是什么?磁鐵?不不不,永磁體的磁場遠遠達不到我們的要求,再回想一下初中二年級的物理知識,沒錯,通電螺線管!利用電流,我們也可以得到磁場,更令人振奮的是,磁感應強度與電流強度成正比,也就是說,電流越大,磁場越強。

        但大電流就會遇到上文提到的兩個問題,焦耳熱與壓降,大電流會產熱,更令人絕望的是焦耳熱與電流的平方成正比,因此,電流每增加一分,磁場就會相應增強一分,但產熱會按平方增加,最終絕大多數能量都將轉化為內能。

        圖片

        目前發現的高溫超導體 | 圖源自wiki

        焦耳熱的來源是電阻,只要沒有電阻,就可以完全不考慮焦耳熱的影響,因此超導體在這里的意義就顯而易見了,我們如果利用超導體線材制作線圈,就可以幾乎無節制(磁場也可以抑制超導態,這里需要注意產生的磁場不能超過超導體的臨界磁場)地提升線圈內的電流強度,進而獲得強大的磁場。這就是核磁共振中強大磁性的來源。

        除了以上場景,利用兩個不同超導體做成的約瑟夫森結也有重要應用價值,我們可以利用它制作SQUID,這個裝置是目前最精確的磁場探測裝置,在超導量子計算機中也有重要應用。

        看到這里,你應該對室溫超導的意義有一定認知了,如果我們真的可以發現常壓下的室溫超導,那將使整個人類社會產生重大改變,我們現有的科技可能面臨顛覆,能源問題得到重大緩解,對整個人類都具有重大進步意義。

        我們還是簡單介紹一下超導體的發現歷程及其輸運性質,這有利于我們理解Dias的工作。

        02

        超導的發現及其機理

        1911年,昂內斯改進了制冷設備,率先將溫度降至液氦沸點之下,在此期間,他發現汞的電阻在4.2K時突然降為零,經過再三確認,他最終確定,這不是實驗上的失誤或誤差,這是汞本征的性質,由此,他打開了超導的大門,汞也是我們發現的第一個超導體,Tc為4.2K。

        圖片

        實際上很多材料都具有超導電性 | 圖源自wiki

        昂內斯僅僅測量的汞的電阻,這揭示了超導體在電輸運上的特征,也就是零電阻。

        圖片

        昂內斯(右一) | 圖源自Wiki

        后來,1933年,邁斯納在對進入超導態的錫或鉛金屬球做磁場分布測量時發現,當材料進入超導態后,其內部的磁場會迅速被排出體外,磁場只在超導體外部存在,超導體展現出完全抗磁性,這就是邁斯納效應。

        后來的研究發現,超導體可以進一步劃分為第一類超導體和第二類超導體,第一類超導體展現出完全的抗磁效應,內部完全沒有磁場。而第二類超導體則允許磁場在超導體內部產生磁通量子,也就是允許磁場部分地進入超導體。

        以上對超導體的研究更多地還停留在對其性質探究,我們實際上也一直在尋找超導的內在機理,探索其本質。

        最開始的嘗試是倫敦方程,不過這個理論無法揭示穿透深度與外磁場的關系。1950年左右,前蘇聯科學家金茲堡和朗道提出了解釋超導的唯象理論——金茲堡-朗道理論(G-L理論)。該理論建立在朗道二級相變理論的基礎上,用序參量描述超導體。該理論成功解釋了超導體,上文提到的第一類超導體與第二類超導體就是根據G-L方程求解的界面能的正負判定的。

        根據G-L理論,超導體從正常態到超導態的轉變是一個二級相變,因此,理論上我們可以在比熱的測量中發現其在Tc處有一個躍變,或者叫一個峰。后來這也在實驗上被證實。

        圖片

        理想超導體的電與比熱性質 | 圖源自wiki

        看到這里,你應該也發現了,超導的文章特別好寫,測一下電阻,測一下磁化率,如果可以的話,再測一下比熱,比熱即便測不了也不是什么大事,搞完這些就齊活了。

        最后還要簡單提一下,我們目前解釋超導的最好的理論就是BCS理論,這個理論的核心就是電子在與晶格的耦合中會出現電子吸引電子的可能,這樣兩個電子會結成庫珀對,結成庫珀對的電子可以看作玻色子,在低溫下,發生“凝聚”,能量可以無耗散地在凝聚的庫珀對中流動,實現超導態。

        但BCS理論也不能解釋所有超導態,我們根據BCS理論計算得到麥克米蘭極限,即符合BCS理論的超導體Tc不會超過40K,但實際上很多超導體都突破了這一極限,比如銅基超導和鐵基超導,這樣的超導體被稱為高溫超導體,也就是說相對于之前20 K以下的超導體,Tc高了很多。

        本來還想介紹一下實驗中高壓的獲取,篇幅所限,有機會再聊。

        03

        新的室溫超導

        有了上面這些預備知識,我們就可以一起來看一下這篇已經被發表在上的文章了。

        圖片

        看到Dias的名字了嗎?最后一個

        同大部分超導的文章一樣,Dias研究團隊對樣品電輸運、磁化率及比熱進行了測量。

        圖片

        首先是電阻的測量結果,左圖中給出了10、16、(1、1.6、2.0GPa)下的電阻測量結果,三個電壓下電阻都降低到了0,這正是超導體的主要特征之一,需要注意的是,這里1GPa時Tc是最高的,壓強越低,Tc越高,是一個令人意外的結果。插圖是樣品及電極圖片。右圖則給出了超導態與正常態的V-I曲線。

        圖片

        這張圖是對磁化率的測量,a圖是60Oe(Oe是高斯單位制中表示磁場強弱的單位,可以理解為高斯,即1T=)下8kbar(0.8GPa)的磁矩隨溫度的變化圖,可以明顯看到其Tc為277K(4℃),b圖給出磁矩與外磁場的關系,也符合超導體的特征,c圖則是不同壓力下的M-T曲線,這里的Tc與電阻上的保持一致,轉變溫度區間也很小,是非常好的轉變。不過在a圖中也可以看出來研究團隊對原始數據做了一定處理。

        這里多提一句,磁化率的測量會明顯受樣品形狀、背底等因素的測量,理論上超導體應該表現出完全抗磁性(即4πχ=-1),但實際測量中測不到完全抗磁性(即4πχ>-1)也是可以理解的。當然Dias的文章中并沒有約化,a圖中縱軸是磁矩,并非磁化率。

        圖片

        Dias還對比熱進行了測量,結果如上圖所示,這里給出了10、10.5、的測量結果,可以看到,三個比熱的曲線均能看到超導在比熱上的轉變,Tc與電阻的測量結果略有區別但完全可以理解,這個結果是合理的。不過該說不說,這個比熱的轉變并不算明顯,尤其是10.5kbar的曲線,峰并不明顯,的轉變也尚不如明顯。這三個比熱的轉變看起來也有些區別,尤其是和10.5kbar的數據,僅差了0.5kbar,但圖像差異卻很大。不過考慮是高壓下測量的,或許有一些我們不知道的困難吧。

        圖片

        Dias還給出了樣品的XRD(X射線衍射)結果,并繪制了晶胞圖像,這當然也是必要的。

        a圖即XRD結果,他們采用了Mo靶,紅線是理論計算的結果,圓圈是實際測量的結果,藍線是二者的誤差,看得出來,測量與計算的結果區別很小,樣品可以說是一個純相,Dias團隊計算樣品占比為92.25%,雜質為LuN1?δHε和Lu2O3。

        b圖則是他們繪制的晶胞圖,白色原子是氫,綠色的是镥,粉紅色的是氮原子,他們給出的樣品化學式是LuH3?δNε,時空間群是Fm-3m和Immm,但Dias認為超導相空間群是前者。

        圖片

        最后是該樣品的超導相圖(原文這是第一張圖),Tc隨著壓強升高而減小,這是出乎大家意料之處,后面或許也將成為研究的重點,b圖是樣片形貌隨著壓強的變化,常壓下是藍色的,隨著壓強升高逐漸變為粉紅,最終呈現紅色,樣品的顏色還是非常喜慶的。

        篇幅有限,支撐材料就不帶大家一起看了,感興趣的同學可以到官網查看:

        of near- in a N-doped |

        從文章來看,這項工作無疑是突破性的,相關證據也很充足,如果能重復出來,搞不好未來能發諾獎。但物理學的研究終究不是一家之言****,任何科學研究都應該經得起驗證,這個也不例外,這項工作勢必要經過行業內各個研究組的重復,如果經過多次重復之后,確定該結果的正確性,那將是劃時代的工作。我們今年諾獎預測也就有底氣了

        圖片

        。

        這次的工作號稱是近環境下的室溫超導,通過上文,大家也能看到,Tc最高處的壓強為1Gpa,大約1萬個大氣壓,雖然還是很大,但相比于之前的270萬個大氣壓,已經小了很多了,重復的難度也小了很多,相信已經有很多研究組已經開始著手重復實驗了。

        不過目前很多人對這個結果持觀望態度,一方面是因為重復實驗結果還沒出來,另一方面或許是因為Dias之前的“前科”。

        其實,在這之前,Dias就已經有了兩個突破性的進展。一個是金屬氫,另一個就是上一個室溫超導。

        Dias首先宣稱自己在高壓下合成了金屬氫,相關文章發表在上,但其他研究組沒有重復出來,而他自己后來宣稱,由于保存不當,保存金屬氫的裝置壓力泄露,最終金屬氫因為壓力不足汽化消失了。后來,Dias也沒有再合成金屬氫。由此,金屬氫可以說是成為了一樁“懸案”。

        上次的氫化物室溫超導也是由Dias合成的,其實現的壓強高達,相關結果發表在上,但后續多個研究組試圖重復該實驗未果,并由于Dias未披露原始數據,多人認為其在磁化率的數據處理中使用了錯誤的方法,得到了并不能算正確的結論。因此在大家的一致抗議下,最終該文章被從上撤稿,當然,Dias研究團隊所有成員都對該撤稿行為表示抗議,不過最終沒有挽回。

        正是因為這兩起事件,領域內許多科學家對Dias研究團隊其實持不信任態度,畢竟他們的數據結果總是比別人漂亮許多。但這次Dias給出很多原始數據,可以說全面又豐富,況且這次的成果只需要1GPa的壓強,重復起來相對簡單,想必我們很快就可以對該成果給出一個定論了,讓我們拭目以待吧。

        返回頂部 seo seo
        国产免费久久精品99reswag